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Introduction
Hyaluronic Acid (HA), or hyaluronan, is a polysaccharide 

composed of a repeated disaccharide unit of β-1,4-D-glucuronic 
acid - β-1,3-N-acetyl-D-glucosamine linked by glycosidic bonds. 
HA is the simplest member of a group of macromolecules known 
as Glycosaminoglycans (GAGs). As the only GAG, it is not covalently 
associated with a core protein, not synthesized through the Golgi  

 
pathway, and the only non-sulphated one. HA can be found in skin, 
joints, eyes and most other organs and tissues. It was originally 
discovered in the vitreous body of the eye and subsequently it was 
identified in most parts of the body, including the Extracellular 
Matrix (ECM) of cartilage tissues [1]. The molecular weight of HA 
can range as high as several million Daltons [2]. Hyaluronic acid 
is an essential component of the ECM, in which its structural and 
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ARTICLE INFO abstract

Background: This study has analysed the viscosupplemental proprieties of three 
commercially available formulations of Hyaluronic Acid (HA) suspension (F1: Synvisc, 
Hylan G-F 20; F2: Hyalgan; F3: Donegal HA 2.0), which differ in composition, Molecular 
Weight (MW) and HA content.

Methods: Analyses were conducted using rheology measurements and Environmental 
Scanning Electron Microscope (ESEM). The capacity of the three tested formulations to 
inhibit specific Metalloproteases (MMPs) was also evaluated. 

Results: F1 is the only sample showing viscoelastic properties but may have increased 
immunogenicity attributable to the subsequent chemical cross-linking process that 
enhances the MW. F2 and F3 show a lower viscosity compared to F1. F2 has the lowest 
viscosity at low shear rate, the lower independence from the oscillatory stress and a 
solution-like rheology behaviour. F3 display a solution behaviour. However, unlike F2, F3 
crossover point falls in the middle of the frequency range of interest showing a considerable 
rheological behaviour. The internal structure of F3 (pseudo-spongy thick filaments) 
suggests that it has the ability to interact with a great water content. The crossover points 
of the examined samples clearly reveal their different rheological behaviour, allowing their 
classification in gel-like or solution-like materials. F3 has higher ability in inhibiting MMP-
2 and MMP-9 activity compared to F1 and F2, probably due to its specific MW and/or 
higher HA concentration.

Conclusion: The three tested HA formulations differ in rheological properties and 
inhibition of MMP-2 and MMP-9 activity. F3 seems to be the most appropriate formulation 
for the treatment of osteoarthritis and rheumatoid arthritis.

https://biomedres.us/
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biological properties account for its activity in morphogenesis, 
wound repair and tissue organisation [3,4]. Additionally, HA is 
rapidly turned over in the body by hyaluronidases enzymatic 
degradation, with consequent relatively short tissue half-lives [5]. 
The relevance of HA in living organisms and in artificial biological 
systems has been emphasized and reported in many occasions [6]. 
Its most important physicochemical properties are its capacity to 
retain water, a very high hydration ratio, and its viscoelasticity. 
These properties contribute to the control of tissue hydration, 
permeability to small or large molecules and in several signaling 
pathways. 

This polysaccharide displays particular conformational 
features, in fact, the macromolecular properties of high molecular 
weight HA in dilute solution have been interpreted on the basis of 
a worm-like coil with moderate stiffness [7] and more recently of a 
stiffish coil [8]. In physiological conditions, the conformation of the 
HA molecule is stiffened by a combination of the chemical structure, 
the internal hydrogen bonds, and the interactions with the solvent, 
which results in a coil structure that traps approximately 1000 
times its weight in water. High concentrations of HA in physiological 
state lead to stable superstructures [9]. Increases in temperature 
determine a breaking of certain cooperative bonds, with consequent 
changes of HA rheological properties and induction of a rapid change 
of the HA superstructure from a long- to a restricted-connectivity 
water structuring [9]. Finally, HA macromolecular chains are not 
homogeneous in length, and consequently in molar mass, but 
reveal a certain extent of polydispersity [10]. Solutions of HA 
exhibit peculiar rheological properties beyond the lubricious and 
very hydrophilic function [11] When examined in the solution state, 
the HA polymer chains fit each other at very low concentrations, 
which further contribute to the unusual rheological characteristics. 
Above the entanglement point the viscosity increases rapidly and 
exponentially with concentration (∼c3.3) [12] and a solution of 10 
g/l may have a viscosity at low shear of ∼106 times the viscosity 
of the solvent, whereas the viscosity may drop as much as ∼103 
times at high shear [13]. The elasticity of the system increases at 
high molecular weight and concentration of HA as expected for a 
molecular network. 

A 1% solution is like jelly, but when put under pressure it 
moves easily and can be administered through a small-bore needle, 
acting as a “pseudo-plastic” material. The rheological properties of 
HA solutions allows an ideal use as a lubricant [6-15]. Hyaluronic 
acid and its derivatives have been used in medicines for may years 
[16]. In recent years, HA has been developed for the creation of new 
biomaterials for use in tissue engineering and regenerative medicine 

[17] due to its biological properties and its lack of immunogenic 
and thrombogenic effects [18]. Solutions of HA do not have long 
lasting mechanical integrity [19,20]. Chemical modification and 
controlled covalent crosslinking have been necessary to generate 
HA-based hydrogels with desired mechanical properties, while 
at the same time maintaining their native biological functions. 
The modification of the molecular weight of HA, the extent of this 
modification and the concentration of the reactive HA precursors, 
hydrogels with varying stiffness, pore size and degradation rate can 
be rapidly realised. Further biological functions can be obtained by 
coupling the HA gels with different biological substances, cytokines 
and therapeutic drugs [21]. Traditional HA-based hydrogels are 
macroscopic networks made of randomly interconnected HA 
chains, but without the structural complexity and functional 
diversity of the natural ECM. 

Drug molecules encapsulated in the network without any 
covalent linkage or other specific interactions may be released 
rapidly due to the relatively large pore size. If the crosslinking 
reaction takes place in a microscopic reaction vessel, HA hydrogel 
particles (HGPs, microgels or nanogels) can be produced [22]. 
Among the use of HA in clinical practice, the Intra-Articular (IA) 
administration is able to restore the normal viscoelastic properties 
of the pathologically altered Synovial Fluid (SF), which explains the 
term of the approach “viscosupplementation”, and to protect the 
articular cartilage and soft tissue against mechanical injuries during 
joint movement [23]. It is thought that HA temporarily restores the 
lubricating and shock-absorbing effects of SF. Moreover, several 
studies suggest that viscosupplements also have disease modifying 
effects, such as reduction of synovial inflammation, [24] protection 
against cartilage erosion, [25] and promotion of SF endogenous 
HA production [26] which explains the term of the approach 
“viscoinduction”. Here, we analyzed by Environmental Scanning 
Electron Microscope (ESEM) and rheology measurements, three 
different commercially available samples of HA suspension in order 
to monitor and compare their viscosupplemental proprieties. 
Finally, their capacity to inhibit specific Matrix Metalloproteases 
(MMPs) was also evaluated.

Materials and Methods
Materials

Hyaluronic acid samples in finished formulations were from 
three different producers, formulation 1 (Synvisc, Hylan G-F 20, 
Sanofi) prepared by using cross-linked HA, formulation 2 (Hyalgan, 
Fidia Farmaceutici) and formulation 3 (Donegal HA 2.0, Chiesi 
Farmaceutici). Table 1 shows the composition and properties of the 
three studied HA formulations.

Table 1: Composition and properties of the three products studied.

HA Formulation Bioactive molecule Molecular Weight (MW) HA Content HA Origin

1 (Synvisc) Hylan G-F 20
Hylan A has a MW = ~6000 

kDa and Hylan B is a 
hydrogel

8.0 ± 2.0 mg/mL Extractive

2 (Hyalgan) HA sodium salt 500-730 kDa 10 mg/mL Extractive 

3 (Donegal HA 2.0) HA sodium salt 800-1200 kDa 20 mg/mL Fermentative 
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ESEM Analysis
Before analysis, the three studied HA samples were lyophilized 

and covered with a thin gold layer, metallization, to obtain images 
with higher resolution. The analyses were performed with a 
Scanning Electron Microscope Quanta ESEM-200 of Fei Company 
(Oxford Instruments) equipped with a: Secondary Electron 
Detector (SED) [High Vacuum], Secondary Electron Detector 
(LFD) [Low Vacuum], Fire secondary electrons (GSED) [ESEM 
mode], Backscattered Electron Detector (BSE) [High Vacuum and 
Low Vacuum], simultaneous detector of secondary electrons and 
backscattered (GBSD) [ESEM mode], backscattered detector (GAD) 
optimized for EDS analysis [Low-Vacuum mode], Table Peltier 
to cool the sample [-25/+55°C], Hot-Stage dynamic experiments 
at variable temperature [≥ 1500°C], system for microanalysis 
X-EDS (Oxford INCA-350), Detector Si (Li) with thin window for 
investigation of elements with low atomic number, software and 
hardware for qualitative and quantitative analysis.

After covering with a thin gold layer (metallization) to obtain 
images having higher resolution, HA samples were analyzed to 
ESEM. Samples from various producers were freeze-dried before 
metallization shoving as a consequence a very low water content. 
Furthermore, HA surfaces were observed to be covered of saline in 
a more or less content. 

Rheology Measurements
Rheological measurements were performed with a Thermo 

Haake Rheostress RS100, equipped with a cone-and-plate fixture 
consisting of a 1°, 6 cm diameter stainless steel cone. The rheometer 
is equipped with a Thermo DC30 water bath Haake to regulate the 
sample temperature, a 2 ml fluid sample was required and the 

rheology behaviour was investigated at 25°C, and 37°C. In all HA 
solution, an initial stress sweeps with an oscillatory stress, at a 
constant frequency of ω = 1 Hz, was applied to determine the region 
of linear response of the sample. On this basis, a value of applied 
stress within the linear regime was used in subsequent frequency 
sweeps. Steady shear flow experiments were carried out for shear 
rates up to 103 s−1, and mechanical properties were investigated as 
a function of time by creep and recovery measurements. 

Inhibition of MMP-2 and MMP-9 Activity
Blood samples were taken from healthy volunteers and serum 

samples were obtained in tubes with no additives. Methods of 
samples’ collection, tracking, transportation and storage were in 
conformity with rules in force in Italy. An amount of 35 μg of total 
HA from the three samples were added to previously separated 
serum and incubated at 37°C for 30 min. After centrifugation at 
1500 rpm for 15 min at 4°C, aliquots containing 140 µg of proteins 
were analyzed by gelatine zymography carried out on 7.5% 
polyacrylamide gels copolymerized with 2 g/L type A gelatine from 
porcine skin (Sigma-Aldrich). MMP calibrators were from capillary 
whole blood. Gelatin zymography (for both gelatinases, MMP-2 and 
-9) is one of the most commonly used tests to assess MMP activity. 
ProMMP-2 at 72 kDa, proMMP-9 and MMP-9 complexed forms at 
92 and 225 kDa were evaluated. Briefly, after electrophoresis, gels 
were washed in Triton X-100 (25 mL/L) and incubated for 24 h at 
37°C in enzyme incubation buffer. Gel staining was performed in 
Coomassie brilliant blue R-250 (2 g/L) and destained in methanol-
acetic acid standard solution. Clear gelatinolytic bands on uniform 
blue background were densitometrically measured by a common 
image analyzer.

Results 
ESEM Profile

Figure 1: ESEM profile of HA from formulation 1 at different magnification (A. 100 µm and B. 30 µm).

From a macroscopic point of view, HA formulation 1 shows a 
filamentous structure (Figure 1A) that tends to flake easily when 
subjected to mechanical stress. The substructure is characterized 
by a dense accumulation of filaments which, however, tend to 

be distributed side by side in longitudinal mode (Figure 1B). At 
macroscopic level, HA formulation 2 shows a collected structure of 
globular type (Figure 2A). By increasing the magnification, it can be 
seen that the HA substructure is characterized by a dense network 

http://dx.doi.org/10.26717/BJSTR.2019.17.002938
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of filaments which tend to clump together in a compact manner 
without a clear and repeated organization (Figure 2B). Finally, 
HA formulation 3 is characterized by a very compact structure 
with defined profiles showing at macroscopic level a larger size 
compared to the other analyzed samples (Figure 3A). The internal 

structure of this globular bodies is made of pseudo-spongy thick 
filaments where HA is distributed in a compact branched nature 
(Figure 3B). This structure suggests that this macromolecule has 
the strong ability to interact with a great content of water.

Figure 2: ESEM acquisition of HA from formulation 2 at different magnification.

Figure 3: ESEM images of HA from formulation 1 at different magnification.

Rheology Behavior

Steady Shear Flow Experiments: In steady shear flow 
experiments, all samples showed a viscosity (ƞ) decrease when 
subjected to high shear strain (Figure 4A). This characteristic shear 
thinning behaviour classified all sample as pseudoplastic material 
and it is indicative of a strongly entangled polymer systems. This 
is the most common form of non-Newtonian behaviour, where 
the viscosity decreases with increasing shear rate. This is often a 
desirable characteristic in viscosupplementation, as it means the 
product can be moved around easily (pumped, spread, injected, 

etc.) but once it reaches its destination and comes to rest it returns 
to a high viscosity, which helps it maintain its position. In particular, 
a marked difference in viscosity at low shear rate (ẙ) is appreciable 
between samples, while at high shear rate values tend to approach 
each other. From the Figure 4A, we can see how HA formulation 1 
has the highest viscosity at low shear rate, while the 2nd formulation 
shows the lowest. Moreover, the sample tends to a Newtonian 
plateau with decreasing shear rate. The plateau viscosity, known 
as the zero-shear viscosity, is a useful and important material 
attribute, signifying the effective viscosity in an at-rest condition. 

http://dx.doi.org/10.26717/BJSTR.2019.17.002938
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Since the magnitude of the zero-shear viscosity is influenced by 
molecular weight, from Figure 4A, we can see how HA formulation 
1 has, probably, the highest molecular weight, while HA from 
manufacturer 2 has the lowest. Furthermore, it is interesting to 

note how the flow curves of formulation 1 crossed the curve of 
formulation 3 at 8 s-1, showing a faster viscosity decrease at high 
shear rate than HA formulation 3. 

Figure 4: A) Shear thinning behavior ƞ [Pa s] versus ẙ [1/s] at 25°C. Formulation 1 (), 2 () and 3 (*). B) Shear thinning 
behavior τ versus ẙ (1000 s-1) at 25°C. 1 (), 2 () and 3 (*).

Figure 5: A) Shear thinning behavior τ versus ẙ (3000 s-1) at 25°C for HA from formulation 1. B) Shear thinning behavior τ 
versus ẙ (3000 s-1) at 25°C for HA formulations 1 and 2. 1 () and 2 (). 

http://dx.doi.org/10.26717/BJSTR.2019.17.002938
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In order to better understand the shear thinning behaviour 
of the samples, shear stress (τ) versus shear rate (ẙ) plots were 
analyzed (Figure 4B). From the figure, we can see that formulation 
1 flow curve presents a marked variation from its shear thinning 
behaviour at 5 s-1. Furthermore, regarding a wider shear rate range, 
up to 3000 s-1 (Figure 5A), it can be pointed out a second variation 
point at 1000 s-1. Figure 5A shows regressions which approximates 
the experimental data in the various considered intervals (0.001÷10; 
10÷1000; 1000÷3000 s-1). In Figure 5B, we compare the flow curve 
of HA from formulations 1 and 2 in a shear rate range up to 3000 
s-1. It is worth of note that above 1000 s-1 the two flow curves tend 
to overlap. Despite the higher viscosity of formulation 1 compared 
to the other two at slow shear rates, with the increasing shear rate 
the viscosity of formulation 1 has a sudden decrease that modify its 
shear thinning behaviour at two different points and even get to cross 

the curve of formulation 2 who shows the lowest viscosity at low 
shear rate. This behaviour of formulation 1 is probably attributable 
to its composition formed from a hydrogel and a dispersion of 
HA: up to 1000 s-1 its rheological behaviour is controlled from the 
gel while after this value it behaves more like a HA solution. Until 
now, all experiments have been performed at room temperature 
(25°C) but it is important to consider also the relationship between 
temperature and viscosity of these formulations. In fact, viscosity 
is generally inversely related with temperature. Since the final use 
of these formulations is viscosupplementation, we have evaluated 
a possible temperature involvement in the rheological behaviour 
at room and body temperature (25°C and 37°C). We appreciated a 
slight viscosity decrease at the temperature rising, but the overall 
behaviour of the sample does not change (Supplemental Figure 1). 

Supplemental Figure 1: A) Shear thinning behavior of formulation 3 at 25°C and 37°C. 25°C () and 37°C (•). B) Shear 
thinning behavior of formulation 1 at 25°C and 37°C. 25° (*) and 37°C ().

Oscillation Stress Sweeps Experiments: In order to 
understand the soft-solid rigidity and gel strength of the samples, 
stress-sweep tests at constant frequency of 1 Hz were performed. 
HA from formulations 1 and 3 showed the independence of elastic 
storage modulus G’ from the oscillatory stress, ranging from 0.1 
to 10 Pa. Notably, for HA formulation 2 a ranging of independence 
of G’ from the stress is observed from 0.1 to 1 Pa, a much more 
limited region (Figure 6A). Figure 6B illustrates a wider range of 
oscillatory stress, up to 250 Pa, to better analyze HA formulations 
1 and 3 behaviour. We can see how at 90 Pa the G’ modulus of 
formulation 1 become lower than 3 G’ modulus. The greater value 

of G’ of formulation 1 at low oscillatory stress is the result of the 
enhanced solid-like character of this viscosupplement due to the 
presence of covalent cross-links, which increased the stiffness 
and show a prevailing physical hydrogel nature. Instead, while 
formulation 3 shows a lower G’ modulus than formulation 1, the 
wider independence region from the stress indicates a softer but 
stronger formulation, probably due to the high HA concentration 
in formulation 3. On the contrary, behaviour of the formulation 2 
is due to a low HA concentration. The linearity of this behaviour is 
furthermore confirmed by τ versus γ plots (Supplemental Figure 2).

http://dx.doi.org/10.26717/BJSTR.2019.17.002938
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Supplemental Figure 2:  versus  for 1 Hz at 25°C. Formulation 1 (o), 2 (), and 3 (•) and 3 ().

Figure 6: A) Stress-sweep at constant frequency of 1 Hz at 25° C. Formulation 1 (·), 2 (*) and 3 (o). B) Stress-sweep at constant 
frequency of 1 Hz at 25° C. Formulation 1 (o) and 3 (*).

Oscillatory Frequency Sweeps Experiments: The viscoelastic 
behaviour of HA from formulations 1 and 3 was tested in oscillatory 
frequency sweeps at stress of 1 Pa, while from formulation 2 0.1 
PA stress were used. The viscoelastic behaviour of a system is 
characterized by the storage modulus, G’, and the loss modulus, 
G’’, which respectively characterize the solid-like and fluid-like 
contributions to the measured stress response. Figure 7A shows 

the storage and loss moduli of formulation 1 and 3 as a function 
of frequency at 25°C, while Figure 7B illustrates the storage and 
loss moduli of formulation 2 at 0.1 Pa as a function of frequency at 
25°C. The vanished region indicates the frequency of a knee joint 
corresponding to a walk (0.5 Hz, lower limit) and to a run (3 Hz, 
higher limit), respectively. 

http://dx.doi.org/10.26717/BJSTR.2019.17.002938
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Figure 7: A) Frequency sweeps at stress of 1 Pa at 25°C. Formulation 1: G’ (o) and G’’ (•). Formulation 3: G’ () and G’’ (). B) 
Frequency sweeps at stress of 0.1 Pa at 25°C for formulation 2: G’ () and G’’ (). 

Supplemental Figure 3: A) Frequency sweeps at stress of 1 Pa at 25°C and 37°C for formulation 1: 25°C G’ (), G’’() and 
37°C G’(o),G’’(•); B) Frequency sweeps at stress of 1 Pa at 25°C and 37°C for formulation 3:. 25°C G’ (), G’’ () and 37°C 
G’(o),G’’(•).
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Moreover, we analyzed the storage and loss moduli of 
formulations 1 and 3 as a function of temperature at 25°C and 
37°C (Supplemental Figure 3). We can observe how only HA from 
formulation 1 displays viscoelastic properties typical of a gel, with 
G’ > G’’, in the frequency region of interest. In fact, the crossover 
point for formulation 1, the frequency (ωc) at which G’ = G’’, falls 
well below the range of frequency at which the knee usually 
works. Instead, formulations 2 and 3 display a solution behaviour, 
with G’’> G’, in the investigated frequency range. However, unlike 
formulation 2, formulation 3 crossover point falls in the middle of 

the frequency range of interest showing a considerable rheological 
behaviour. Interestingly, the crossover points of the examined 
samples clearly reveal their different rheological behaviour 
allowing the investigated materials to be sorted into two classes, 
gel-like material with lower ωc values and solution-like materials 
placed with higher ωc (Table 2). In all formulations, the increase of 
temperature is directly proportional to the increase of frequency, 
with a higher G’ modulus and lower G’’ modulus. Anyway, even at 
37°C, HA from formulation 1 is the only one to show the required 
viscoelastic properties. 

Table 2: Crossover points of samples at 25°C and 37°C.

HA Formulation Ωc (Hz) at 25°C Ωc (Hz) at 37°C

1 (Synvisc) 0.006 0.014

2 (Hyalgan) 21.5 28.0

3 (Donegal HA 2.0) 4.6 7.3

Creep and Recovery Experiments: Creep-recovery is a time 
dependent rheological experiment in which a constant shear stress 
is applied at sample until it reaches the so-called creep time. After 
this, the stress is removed and the shear recovery is measured 
during the recovery time. Creep-recovery experiment has been 
performed to quantify the percentage of elastic recovery and to 

evaluate the mechanical response to the creep. Results showed for 
formulation 1 an evident recovery of about 30% in the recovery 
phase (Figure 8A) with a viscoelastic gel typical response. Figure 
8B illustrates the creep and recovery of formulation 3 showing an 
extremely limited recovery, in order of 1% typical of a Maxwell 
model belonging to a viscoelastic fluid.

Figure 8: A) Creep and recovery for formulation 1 at 1 Pa and 25°C. B) Creep and recovery for formulation 3 at 1 Pa and 25°C.

Inhibition of MMP-2 and MMP-9 Activity
Formulation 1 was able to inhibit the activity of MMP-2 72 kDa 

of ~ 21% and sample 2 of ~ 32%. Formulation 3 was found more 
effective with an inhibition of ~48%. This activity was determined 
to be significantly higher (p<0.001) than that measured for 
formulations 1 and 2 (Figure 9). Formulation 1 was also able to 
inhibit the activity of MMP-9 complexed forms at 225 kDa of ~ 
13% and formulation 2 of ~ 39%. Formulation 3 was again found 

more effective with an inhibition of ~100%. This activity was 
significantly higher (p<0.001) than that measured for formulations 
1 and 2 (Figure 9). Contemporary, formulation 1 was able to inhibit 
the activity of MMP-9 92 kDa of ~ 66% and sample 2 of ~ 24%. 
Formulation 3 was found more effective with an inhibition of 
~82%. This activity was again determined to be significantly higher 
(p<0.001) than that measured for the other two formulations 
(Figure 9). 

http://dx.doi.org/10.26717/BJSTR.2019.17.002938
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Note: Data are means with SD in bars: Sample 1 = Formulation 1 (Synvisc); Sample 2 = Formulation 2 (Hyalgan); Sample 3 = 
Formulation 3 (Donegal HA 2.0).
Figure 9: MMP-2 72 kDa, MMP-9 complexed forms at 225 kDa and MMP-9 92 kDa percentage of inhibition by the three HA 
formulations.

Discussion

In steady shear flow experiments, all HA formulations showed 
a characteristic shear thinning behaviour that classify all of them as 
pseudoplastic material. Regarding formulation 1, we demonstrate 
how it presents the higher viscosity at low shear rate probably due 
to its cross-linked nature and high molecular weight. However, at 
high shear rate, this formulation presents a marked variation of its 
rheological behaviour. In fact, after 1000 s-1, it looks more like a HA 
solution and not a gel. The presence of covalent cross-links in this 
HA formulation is clearly evidenced by the ESEM analysis in which 
we can see a filamentous structure that tend to be distributed side 
by side in longitudinal mode. This particular organization probably 
increases the stiffness and shows a prevailing physical hydrogel 
nature. In fact, this formulation shows a great value of G’ modulus at 
low oscillatory stress, but even if it has a wider independence from 
the stress than the formulation 2, it is not as stronger as observed 
for formulation 3. According to its composition, formulation 1 is the 
only sample showing viscoelastic properties typical of a gel, with G’ 
> G’’, in the frequency region in which the knee works, furthermore 
confirmed from the creep and recovery test in which there is a 
viscoelastic gel typical response, with an evident recovery of about 
30% in the recovery phase. Anyway, it has been showed that cross-
linked HA preparations, like formulation 1, could have increased 
immunogenicity attributable to the subsequent chemical cross-
linking process able to enhance the average molecular weight. 
These polymers are often generated by chemical modification of HA 
samples involving formaldehyde and vinylsulfone processes. 

The resulting bridges and sulfonyl-bis-ethyl cross-links 
generate covalently linked three-dimensional secondary and 
tertiary structures in these polymers which are far more complex 
than any seen in not modified HA. The size and complexity of 
this structure are likely to result in novel antigenic determinants 
that are not present in naturally-derived not cross-linked HA 
products [27]. From a clinical perspective, a published review 
and metanalysis [28] has concluded that, given the likely lack of a 

superior effectiveness of hylan over HAs and the increased risk of 
local adverse events associated with hylan, the use of i.a. hylan in 
patients with knee Osteoarthritis (OA) in clinical practice should be 
discouraged. Hyaluronic acid from formulation 2 shows instead the 
lowest viscosity at low shear rate, the lowest independence from 
the oscillatory stress and a rheology behavior more like a solution 
material, with G’’>G’. From ESEM analysis, we can see how the 
filaments of these samples tend to clump together without a clear 
and repeated organization. The lack of an organized structure is 
probably the reason of the weaker gel behaviour of this formulation. 
Formulation 3, as the above reported formulation 2, shows a lower 
viscosity and a lack of gel-like behaviour compared to formulation 
1. 

However, this HA formulation has a wider independence 
region from the oscillatory stress indicating a softer but stronger 
formulation. Moreover, the ESEM analysis shows a pseudo-spongy 
thick filaments where HA is distributed in a compact branched 
nature suggesting that this macromolecule has the strong ability 
to interact with a great content of water. Rheumatoid Arthritis 
(RA) and OA are characterized by an irreversible destruction of 
the cartilage, tendon, and bone that surround the synovial joints. 
In both RA and OA, inflammatory cytokines and tumor necrosis 
factor-alpha stimulate the production of MMPs, which can degrade 
all components of the ECM. The collagenases, MMP-1 and MMP-13 
are rate limiting in the process of collagen degradation in these 
diseases. Expression of other MMPs such as MMP-2 and MMP-9 
is also elevated in arthritis. They can degrade not only collagen 
such as type IV collagen in basement membrane, but also the non-
collagen components of the joints [29]. Research has been made 
to develop effective inhibitors of MMP activity to counteract the 
destruction of connective tissues. Finally, by considering the above 
illustrated results, formulation 3 (Donegal HA 2.0), along with its 
rheology behaviour, capacity to interact with a great content of 
water and non-immunogenic properties, shows the higher ability 
in inhibiting MMP-2 and MMP-9 activity compared to the other two 
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formulations, probably due to its specific molecular weight and/or 
higher HA concentration, making it a more adequate product for 
the treatment of diseases like arthritis.

Conclusion

The three tested HA formulations differ in rheological 
properties and inhibition of MMP-2 and MMP-9 activity. Among the 
three tested formulations, formulation 3 (Donegal HA 2.0) seems to 
be the most appropriate one for the treatment of osteoarthritis and 
rheumatoid arthritis.
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