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Axonal lesions of the peripheral nervous system (PNS) 

disconnect their targets from the central nervous system (CNS), 
resulting in motoric and sensory impairments. While axons of 
the PNS are generally able to regrow, functional recovery often 
remains incomplete. This is because, under normal conditions, 
axons regenerate with a speed of 1-2 mm per day [1,2]. This speed, 
however, is only kept up for a few months, after which neurons turn 
off their intrinsic growth program and Schwann cells lose their 
growth promoting functions [1,3]. This timeframe enables axons of 
the PNS to regenerate a distance of approximately 9-18 cm, which 
is not sufficient for many nerve injuries that can span distances of 
up to one meter. Axons that are unable to reinnervate their original 
targets do not just leave patients with functional deficits but are 
also often misguided and form improper innervations known 
as neuromas. These cause chronic pain that is difficult to treat. 
Consequently, it has been shown that accelerating peripheral axon 
growth improves the general outcome of the motor and sensory 
recovery after nerve injury [4]. However, despite years of research, 
no treatments that accelerate the axon growth rate are clinically 
available [5].

One crucial determinant of axon growth speed is the dynamics 
of microtubule filaments (MTs). MTs are part of the neuronal 
cytoskeleton that maintains axonal polarity. Their cylinder-like 
structure with a diameter of 25 nm is made up of 13 heterodimers 
consisting of α and β tubulins. In axons, MTs are mainly organized  

 
with the α tubulin facing towards the axonal tip (the so-called 
“+ end”), and the β tubulin is facing towards the soma (the so-
called “– end”). In the tip of extending axons, the growth cone, 
more tubulin heterodimers are added to the MT “+ end” than 
removed, thus pushing the growth cone forward. The speed of 
addition of new heterodimers to the “+ end” is, among other 
factors, dependent on various posttranslational modifications of 
the α tubulin [6]. One such posttranslational modification is the 
removal of the C-terminal tyrosine residue [7]. This detyrosination 
is mediated by a so far unknown tubulin carboxypeptidase. Since 
mainly tyrosinated tubulin heterodimers are added to the “+ tips” 
of MTs, and these restrict the rate of MT polymerization, growth 
cone progression speed is controlled by modifying the tyrosination 
status of α tubulins. Thus, decreasing MT detyrosination could 
be a potential method for accelerating axon regeneration and 
consequently functional recovery after PNS injury. Consistent with 
this hypothesis, the addition of tyrosinated tubulin heterodimers 
to MTs occurs significantly faster in cultured cell lines than 
detyrosinated ones [8]. Moreover, several studies demonstrated a 
correlation between glycogen synthase kinase 3 (GSK3) activity-
induced phosphorylation of microtubule-associated protein 1B 
(MAP1B) and reduction of microtubule detyrosination as well as 
acceleration of axon extension of embryonic PNS neurons [9-12]. 

Although the molecular mechanism directly linking MAP1B 
phosphorylation and MT detyrosination has not yet been 
established, it is generally assumed that phospho-MAP1B interacts 
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with the tubulin-carboxypeptidase or a tubulin-tyrosine to reduce 
MT detyrosination, thus improving axon growth [9,10,13-15]. 
In agreement with these ideas, we recently demonstrated that 
similar mechanisms are also relevant for regenerative processes 
of axons in the adult PNS. Constitutively active GSK3 reduced MT 
detyrosination and subsequently increased axon growth in cultured 
sensory neurons almost two-fold [16,17]. We also demonstrated 
that the GSK3-induced MT detyrosination was, in fact, responsible 
for the increased axon regeneration as pharmacological inhibition of 
MT detyrosination with parthenolide, a sesquiterpene lactone that 
naturally occurs in the plant feverfew (Tanacetum parthenium) also 
decreased MT detyrosination in the axon tips and fully mimicked 
the axon growth-promoting effect in cultured PNS neurons 
[16]. Strikingly, constitutively active GSKe and parthenolide also 
markedly accelerated axonal regeneration in living animals [16,17]. 
A single injection of parthenolide into the lesioned sciatic nerve or 
the systemic application of the drug was sufficient to significantly 
increase the number and length of regenerating axons in the distal 
nerve three days post-lesion [16]. 

Also, neuromuscular junctions were re-associated with axons 
already four days after nerve crush, while none were detectable 
in vehicle-treated animals. Consequently, parthenolide treatment 
markedly accelerated the recovery and almost halved the time to 
restore motor and sensory function of injured animals. These effects 
were achieved at very low doses, and the animals did not show 
any signs of side effects [16]. The efficacy of systemically applied 
parthenolide for the therapeutic promotion of nerve regeneration 
is particularly promising as recurrent treatments are facilitated 
compared to local invasive nerve injections. It remains, however, 
to be seen if a continued systemic parthenolide application can 
even further accelerate and improve functional recovery also 
in other species and animal models lacking the ability to fully 
restore function after a nerve injury, for example after complete 
nerve transection. These studies are underway. Therefore, we 
consider drugs, such as parthenolide that inhibit detyrosination 
of microtubules and thereby increase their dynamics in axonal 
growth cones to be attractive candidates for further validation as 
therapeutic agents for traumatic nerve injury. In addition, it seems 
feasible that these drugs may also be beneficial for disease and 
drug-induced generalized neuropathies multifocal axonal damage, 
which severely limits the quality of life of more and more affected 
patients.
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