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Introduction
In computer aided drug design system, molecular docking, 

nonbonding interactions, and ADMET predictions are important 
criteria to evaluate newly designed molecules [1]. A group of non-
steroidal anti-inflammatory drugs (NSAIDs) has been routinely 
medicated for arthritis, fever, and pain through common mechanistic 
pathways of cyclooxygenase (COX) inhibition of prostaglandin 
synthesis [2]. More of, in the cell bio assay COX enzyme especially 
COX-2 enzyme catalyzes the inflammatory mediator prostaglandin 
synthesis, prostacyclin and thromboxane as a consequence, 
suppression of COX-2 enzyme activity could be of therapeutic usage 
[3], [4]. In vivo selective COX-2 inhibition strategy of Ketorolac 
drugs is well known for cancer treatments due to their structural 
diversity, high efficacy, low side effect over other NSAIDs drugs 
[4,5]. Apart from that, Ketorolac salt also has selective inhibition of 
DDX3 protein through intra and intermolecular H-bond formation 
in the diagnosis of several types of cancer [6]. 

By rational investigation and functionalization of NSAIDs drugs, 
researchers put forward their studies on more potential action  

 
with reduced side effect and multiple diseases such as cancer HIV, 
neuro-degenerative diseases [7,8]. In this research we scrutinized 
computationally various derivatives of Ketorolac and their mode 
of action with amino acids of respected protein in view of their 
structural properties and future implementation on drug discovery. 
NSAIDs drugs have some adverse effects depending on the type and 
nature of unusual physical condition of the body and on the limit 
of dose [9]. Recently, it has been seen the trait of modifying drugs 
using halogens and alkyl group play important role in improving 
drug performance. Drug modification is another alternative way to 
search better agent, which can increase the selective action of drug 
and reduce the side effect [10]. Herein, we report the optimization 
of some Ketorolac derivatives to investigate their biochemical 
behaviour on the basis of quantum mechanical approach.  

The free energy, electronic energy, enthalpy, dipole moment, 
electrostatic potential, HOMO-LUMO gap, hardness, softness, and 
chemical potential have been calculated. Molecular docking and 
nonbonding calculation have been performed to understand the 
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binding affinity, mode(s) and interaction between drugs and the 
amino acid residues of human prostaglandin synthase protein 
(5F19). All the derivatives show better thermal stability, and 
chemical reactivity and few of the derivatives have better binding 
affinity, nonbonding interactions. From the regarding quantum 
chemical studies, we are assuming that, some of the designed 
compounds may have profound effect as drug.

Methods and Materials
Computational Details

In computer aided drug design, quantum mechanical methods 
are widely used to predict thermal, molecular orbital, and molecular 
electrostatic potential properties [11]. Initial geometry of Ketorolac 
(K) was taken from the online structure database named Chem 
Spider [12]. Geometry optimization and further modification of 
all structures carried out using Gaussian 09 program [13]. Density 
functional theory (DFT) with Becke’s (B) [14] three-parameter 
hybrid model, Lee, Yang and Parr’s (LYP) correlation functional [15] 
under Pople’s 6-31g (d,p) basis set has been employed to optimize 
and elucidate their thermal and molecular orbital properties [16]. 
Initial optimization of all compounds was performed in the gas 
phase. Dipole moment, electronic energy, enthalpy, free energy, 
electrostatic potential and atomic partial charge are calculated for 
all the compounds.

Frontier molecular orbital features HOMO (highest occupied 
molecular orbital), LUMO (lowest unoccupied molecular orbital) 
were calculated at the same level of theory. For each of the drugs, 
HOMO-LUMO energy gap, hardness (η), softness (S), and chemical 
potential were calculated from the energies of frontier HOMO and 
LUMO as reported considering Parr and Pearson interpretation 
[17,18] of DFT and Koopmans theorem [19] on the correlation of 
ionization potential (I) and electron affinities (E) with HOMO and 
LUMO energy (𝜀). The following equations are used to calculate
hardness (η), softness (S), and chemical potential (μ);
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Molecular Docking and Nonbonding Interactions

Molecular docking simulation was performed to understand 
the mechanism of the prostaglandin H2 (PGH2) inhibition by 
newly designed Ketorolac analogues and their binding affinity 
and mode(s) with target protein [20]. The 3D structure of aspirin 
acetylated human cyclooxygenase-2 (PDB ID: 5F19) was obtained 
in pdb format from online protein data bank (PDB) database [21]. 
All hetero atoms and water molecules were eliminated using PyMol 
(version 1.3) software packages [22]. Energy minimization of the 
protein implemented by Swiss-Pdb viewer software (version 4.1.0) 

[23]. Than optimized drugs were subjected for molecular docking 
study against human prostaglandin synthase protein (5F19). Finally, 
molecular docking simulation was performed by PyRx software 
(version 0.8) [24] considering the protein as macromolecule and 
the drug as ligand. In this analysis, rigid docking was performed 
where, all rotatable bonds were converted into non-rotatable with 
the center grid box size 20.8612, 37.5501 and 59.3402 Å along x, y 
and z directions respectively. After docking, both the protein and 
ligand structures were saved in .pdbqt format required by Accelrys 
Discovery Studio  (version 4.1) to analyze and visualize the docking 
result and search the interactions between ligands and target 
protein [25].

ADMET Predictions
In drug discovery, computational predictions are using to 

explore absorption, distribution, metabolism, excretion, and 
toxicity (ADMET) which saves on time and investment. AdmetSAR 
online database was utilized to predict ADMET properties of 
Ketorolac and its analogues [26]. 

Figure 1: Chemical structure of Ketorolac (K) and its 
designed analogues.

Result and Discussion
Thermochemical Analysis 

Simple modifications of molecular structure significantly 
influence the structural properties including thermal and 
molecular orbital parameters. From the free energy, and enthalpy 
values, spontaneity of a reaction and stability of a product can be 
predict [27]. In drug design, hydrogen bond formation and non-
bonded interactions also influenced by dipole moment. Increased 
dipole moment can improve the binding property [28].  From 
thermodynamic data (Table 1), the free energy of Ketorolac is 
-859.6743 Hartree, where K1 shows the highest negative value 
(-1319.2329 Hartree). The –Cl substitution (K1) influence the free 
energy significantly. Highly negative free energy suggesting stable 
the configuration. Again, the dipole moment of Ketorolac is 0.5665 
Debye where K4 shows the maximum dipole moment (5.2017 
Debye) due to substitution of –CN group (Figure 1).

Table 1: The stoichiometry, molecular weight, electronic energy, enthalpy, free energy in Hartree and dipole moment (Debye) of 
Ketorolac (K) and its derivatives.

Name Stoichiometry Molecular weight Electronic energy Enthalpy Free energy Dipole moment

K C15H13NO3 255.26 -859.6287 -859.6122 -859.6743 0.5665

K1 C15H12ClNO3 289.71 -1319.2329 -1319.2151 -1319.2807 2.0973

K2 C16H15NO4 285.29 -974.1228 -974.1036 -974.1718 1.6985
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K3 C15H12FNO3 273.25 -958.8692 -958.8518 -958.9161 1.4239

K4 C16H12N2O3 280.27 -951.8711 -951.8527 -951.9194 5.2017

K5 C16H12F3NO3 323.27 -1196.659 -1196.6391 -1196.7113 3.0639

Figure 2: Most stable optimized structures of Ketorolac and newly designed drugs by analogues. Optimized with B3LYP/6-
31g (d, p) level theory.

Molecular Orbital Properties
The HOMO-LUMO energies, hardness, softness, chemical 

potential of all drugs are presented in Table 2. The electronic 
absorption relates to the transition from the ground to the first 
excited state and mainly described by one electron excitation 
from HOMO to LUMO [29]. The chemical hardness, softness, and 
chemical potential values depend on the energy of HOMO-LUMO 

[8,30]. Kinetic stability increase with the increase of HOMO-LUMO 
gap. As a result, removal of electrons from ground state HOMO to 
excited state LUMO requires more energy. In our studies, Ketorolac 
shows the HOMO-LUMO gap 5.1935 eV, where K4 have lowest 
energy gap (4.1334 eV) and chemical potential (-7.4028 eV) with 
highest softness (0.4838 eV) which may contribute higher chemical 
reactivity (Figure 3).

Figure 3: Frontier molecular orbital (HOMO-LUMO) and related transition energy of Ketorolac (K) and K4.
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Table 2: Energy (eV) of HOMO, LUMO, gap, hardness, softness and chemical potential of the designed drugs.

Name eHOMO eLUMO Gap Hardness Softness Chemical potential

K -5.9875 -0.7940 5.1935 2.5967 0.3851 -3.3907

K1 -6.1247 -1.6868 4.4379 2.2189 0.4506 -3.9057

K2 -5.8586 -1.2990 4.5596 2.2798 0.4386 -3.5788

K3 -6.0559 -1.5347 4.5212 2.2606 0.4423 -3.7953

K4 -6.3130 -2.1796 4.1334 2.0667 0.4838 -7.4028

K5 -6.1987 -1.8471 4.3516 2.1758 0.4596 -4.0229

Molecular Electrostatic Potential Analysis
Molecular electrostatic potential (MEP) was calculated at 

B3LYP/6-31G (d) level of theory to forecast the reactive sites for 
electrophilic and nucleophilic attack of all optimized structures [31]. 
Red colour represent maximum negative area which favourable 
site for electrophilic attack, blue colour indicate the maximum 
positive area which favourable site for nucleophilic attack and 
green colour represent zero potential area. MEP displays molecular 
size, shape as well as positive, negative and neutral electrostatic 
potential regions simultaneously in terms of colour grading. It is 
seen from MEP map, region having the negative potential are over 
electronegative atom (oxygen atoms) and having positive potential 
are over hydrogen atoms. Here, the maximum positive potentiality 
is found for Ketorolac is -0.2475 a.u (deepest red) for oxygen atoms 
and the highest positive potentiality of K5 is +0.1837 a.u (deepest 
blue) of hydrogen atoms (Figure 4)

Figure 4: Molecular electrostatic potential maps of 
Ketorolac (K) and K5.

Molecular Docking and Nonbonding Interactions 
Analysis

Binding affinities and ligand-protein interactions are 
summarized in Table 3. Greater negative values of binding affinity 
indicate stronger binding between drugs and the receptor protein. 
Strong hydrogen bonding is the most significant contributing factor 
in increasing binding affinity of drugs with the receptor (Figure 

5). Non-covalent interactions such as hydrogen bond, halogen 
bond and hydrophobic interaction are involved in the binding of 
examined drugs. Recently, it is reported that, hydrogen bond of <2.3 
Å are able to increase the binding affinity by several magnitude [32] 
and halogen bonds have almost similar importance as hydrogen 
bond in chemical and biological system [33]. The binding affinity of 
Ketorolac is -8.7 kcal/mol where, K2, K4 and K5 have considerably 
increased to -10.0, -9.5 and -9.1 kcal/mol respectively. Decreased 
binding affinities are found in case of K1 (-8.6 kcal/mol) and 
K3 (-8.5 kcal/mol). Significant hydrogen and halogen bonding 
observed in K5 (Figure 6), which not only contributes in increasing 
binding affinity but also increase binding speciality.

Figure 5: Docked conformation of K2 at inhibition 
bounding site of receptor protein (5F19).

Figure 6: (A) Nonbonding interactions of K5 with receptor 
protein 5F19. (B) Hydrogen bond surface of 5F19 with K5.

Table 3: Binding affinity and nonbonding interactions of Ketorolac (K) and its modified derivatives.

Name Binding affinity (kcal/mol) Residues in contact Interaction types Distance (Å)

K -8.7

Asp157 PA 3.38832

Gly135 Ps 2.64184

Val155 Aps 5.01994

Pro154 Pal 4.70537

Pro156 Pal 4.04921
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K1 -8.6

Asn34 H 2.40192

Cys47 H 1.94084

Cys47 C 3.1608

Leu152 A 5.15481

Asn34 H 2.40192

Cys47 H 1.94084

Cys47 C 3.1608

Leu152 A 5.15481

K2 -10.0

Asn43 H 2.62371

Arg44 H 2.34991

Gln461 H 2.33115

Gln461 H 3.70579

Cys47 Pal 4.64343

Pro153 Pal 4.27612

Leu152 Pal 5.46447

K3 -8.5

Asp125 H 2.32267

Ala151 H 2.86298

His39 H 3.38968

Arg44 H 1.73807

Arg44 H 2.66653

Tyr130 C 2.66002

His39 C 3.07968

Pro40 X 3.73344

Cys46 Pal 2.42417

Cys47 Pal 3.25373

Pro153 Pal 4.95221

K4 -9.5

Phe529 PA 4.37944

Phe381 Ppt 5.1648

Leu534 Pal 4.60338

Val349 Pal 4.44982

Ala527 Pal 4.69393

Leu531 Pal 5.28223

K5 -9.1

Arg44 H 2.38051

Arg44 H 2.23812

Arg44 H 2.38811

Arg44 X 2.93073

Asp125 X 3.10573

Try130 Ppt 5.78627

Asp125 X 2.69996

Asp125 X 3.64315

Cys47 Pal 3.13359

Arg44 A 4.07073

Arg44 Pal 4.79261

Val46 Pal 5.19041

Pro153 Pal 3.82592

Here, H=Conventional hydrogen bond, C= Carbon hydrogen bond, A= Alkyl, Aps= Amide-pi stacked, PA= Pi-anion, PS= Pi-sigma, 
Pal= Pi-alkyl, PPS= Pi-pi stacked, Ppt= Pi-Pi T shaped, X= Halogen bond
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Nonbonding interactions are important consideration of 
drug protein conjugation. Except conventional H-bond frequently 
observed non-bonding interactions are CH/π, OH/π, and CH/O. 
Upon introduction of -Cl group in K1 structure conventional 
H-bond predominated with both Cysteine and Asparagin moiety 
within closer distance which is very reasonable since of chlorine 
contribution to total conjugation. On the other hand, methoxy 
group promoted several H-bonds through structural similar amino 
acids such as Asparagin, Glutamine, and Ariginine also in this 
case CH/π observed with Cystein, Proline and Leucine part of the 
protein. A variety of binding sites including both conventional and 
non-conventional H-bonds observed upon fluorine substitution, in 
where Arginine, Aspartic acid positioned most favorable distance 
toward the drug. Apart from that, CH/π interactions observed for 
Cystein, Tyrosine and Proline. No such contribution of conventional 
H-bonds observed during -CN group substitution rather than π/
alkyl non-bonding interactions observed with multiple amino 

acids. Lastly, in the K5, short distance halogen bonds observed with 
Aspartic acid. Another important Pi-Pi T shaped (Ppt) interaction 
observed in K4 and K5.

ADMET Predictions
ADMET calculation has performed to investigate the safety 

level of designed analogues after administration in the human body. 
According to Admet SAR data (Table 4), Ketorolac shows II category 
acute oral toxicity and rest of the analogues show III category 
acute oral toxicity, which suggesting less toxicity of analogues than 
parent drug. All the analogues are non-carcinogenic, show positive 
response for blood brain barrier (BBB) and human intestinal 
absorption criteria. All drugs are P-glycoprotein non-inhibitor 
where, P-glycoprotein inhibition can interrupt the absorption, 
permeability and retention of the drugs [34].  However, all the 
compounds show weak inhibitory feature for human ether-a-go-
go-related gene (hERG) which can lead to long QT syndrome [35], 
so furthermore study of this aspect is necessary.

Table 4: Selected pharmacokinetic parameters of Ketorolac and its designed derivatives.

Name Blood brain barrier Human intestinal absorption P-glycoprotein inhibitor hERG Carcinogen Acute oral toxicity

K +(0.7918) +(0.9919) NI(0.8684) WI(0.9478) NC(0.9592) II (0.4567)

K1 + (0.7849) + (0.9932) NI (0.8430) WI (0.9318) NC(0.9351) III(0.5264)

K2 + (0.7284) + (0.9603) NI (0.8523) WI (0.9110) NC(0.9744) III(0.5876)

K3 + (0.8257) + (0.9931) NI (0.8558) WI (0.9572) NC(0.9432) III(0.5493)

K4 + (0.7407) + (0.9806) NI (0.7115) WI (0.9571) NC(0.9564) III(0.4682)

K5 + (0.8653) + (1.0000) NI (0.7299) WI (0.9767) NC(0.9373) III(0.5252)

Here, NI= Non inhibitor, WI= Weak inhibitor, NC= Non carcinogenic

Conclusion
From quantum chemical calculations, all the analogues are 

thermally and configurationally more stable than Ketorolac. Also 
have smaller HOMO-LUMO gap and higher chemical reactivity 
than parent drug. From docking simulation, K2, K4, and K5 show 
higher binding affinity than K, where most significant interactions 
are observed for K5-5F19 complex. ADMET results predict that, 
analogues are non-carcinogenic, and relatively less harmful for oral 
administration. Considering above investigation, K2, K4, and K5 can 
be potent new possible candidate for the better performance.
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