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The number of patients suffering from damaged or diseased 

tissues has increased due to an aging population. The result has 
been a greater socioeconomic burden on society. For example, the 
United States alone spends 17.1% of its gross domestic product 
(GDP) on health care [1,2]. Hence, there is a pressing need to 
develop novel cost-effective methods for tissue reconstruction 
using medical grade implants. Historically, such implants have been 
manufactured using traditional manufacturing technologies such 
as injection molding. Unfortunately, these technologies have certain 
drawbacks, namely they are often reserved for mass production 
due to the high initial costs involved and part design restrictions. 
Moreover, medical implants are often produced in generic sizes 
that are commonly based on an “average” patient. One solution to 
these problems is to manufacture patient-specific implants using 
3D printing. This allows precise control of size, shape and geometry 
of the implant to better mimic native tissues [3,4]. Compared to 
traditional manufacturing, however, the 3D printing of medical 
implants is still in its infancy. Pro tempore, titanium alloys and poly-
ether ether ketone (PEEK) implants are sporadically manufactured 
using selective laser sintering (SLS) printing technologies [5,6]. 
However, both titanium and PEEK have certain drawbacks. 

For example, they both require high printing temperatures 
above 300°C, and therefore such implants are more expensive to 
manufacture. Furthermore, such materials are difficult to sculpture 
during surgery due to their rigidity (>120 GPa) [7]. Hence, novel 
printable, implant-grade materials are still sought. Polymers  

 
have several advantages over titanium. These include lower cost,  
reduced weight, and excellent biocompatibility [8]. Furthermore, 
there are a plethora of possibilities for tailoring the material, 
processing, and product properties of polymers [9]. However, 
the lack of printable polymers suitable for medical applications 
still remains [5,10]. Very few printable polymers currently 
comply with American Food and Drug Administration (FDA) and 
European medical device regulations. Fortunately, the FDA 510(k) 
clearance process allows changes to be made to the manufacturing 
processes of existing polymers that have initially been developed 
for traditional manufacturing technologies such as injection 
molding [11]. As a consequence, the FDA approval time required 
to change the manufacturing process of an existing implant- grade 
polymer from injection molding to 3D printing can be markedly 
shortened. However, printing medical constructs that have qualities 
comparable to those acquired during injection molding remains a 
challenge [12,13].

 In 3D printing, the print properties and quality largely depend 
on the material flow behavior, which can be characterized by 
the viscosity function using rheology. The viscosity function of a 
polymer is known to be influenced by extrusion temperature, flow 
rate, molecular weight, and chain structure. In this context, it must 
be noted that polymers will not be able to flow or take shape if 
the extrusion pressure and temperature are too low but can also 
degrade if the temperature is too high. Therefore, the operation 
window has to be carefully chosen and adjusted accordingly. 
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However, flow instabilities such as melt fracture or surface 
distortions may arise within or outside the printer extruder setup, 
e.g., in cases of high processing rates or internal stresses. Another 
challenge that remains in the 3D printing of polymers are the 
temperature differences between the adjacent layers in the build. 
These differences in temperatures mean that cooling occurs when 
the heated nozzle moves from one build area to another. Uneven 
cooling can lead to a reduction in mechanical properties such as 
the tensile strength of the printed construct, particularly in the 
Z-direction of the build [14-16]. This problem could be solved by 
properly re-heating the previously printed layer, and thus allowing 
the large polymer chains to diffuse across the layer interface. The 
diffusion speed (D) of the polymer chains is inversely related to 
the molecular weight, Mw, of the polymer chains (𝐷 ∝ 1/(𝑀𝑤)3 also 
strongly dependent on the melt temperature (𝐷 ∝ 𝑇2) [17]. 

Therefore, layer adhesion can be improved by lowering the 
molecular weight and raising the melt temperature of polymers. 
Another option is to enhance the interfacial strength by applying 
adhesive possibilities that “glue” the layer interfaces by means of 
reactive chemistry. An even more advanced option would be to 
use photopolymers, which offer better intrinsic adhesion between 
successive layers. However, to the best of our knowledge no ISO-
10993 implant-grade photopolymers are currently available on 
the market. In conclusion, 3D printing of patient-specific implants 
using existing FDA-approved polymers is feasible. However, 
achieving the corresponding physical, structural and mechanical 
properties of injection-molded constructs still remains a challenge. 
Future research should focus on optimizing both the material and 
processing parameters of polymers and developing novel (photo)
polymers for 3D printing.
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