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Introduction
Cellular plasticity is described as the following ways: combi-

nation of de-differentiation and re-differentiation, or convert into 
another lineage directly, which is termed as adaptive cellular re-
programming [1]. Plasticity also occurs in several stem cell popula-
tions located in different domains of skin. After injury, stem cells in 
one compartment are able to differentiate to almost all mature cell 
types of other compartments [2]. Progenitor cells have the similar 
property. “Interconversion” is usually used to describe the plastici-
ty of stem cells, whereas “Transdetermination” to progenitor cells 
[3]. Cutaneous wound healing is characterized by coordinated and 
overlapping steps including inflammation, proliferation, and re-
modeling [4]. Cellular plasticity, as a critical physiological healing 
mechanism, mainly works in the latter two phases. 

Cellular Plasticity in Inflammation Phase

Inflammatory response is crucial to protect the body from in-
vading organisms at wound. The pro-inflammatory macrophages 
with classical phenotype are named M1 macrophages, correspond-
ing to Th1IFN-γ-driven responses, while the anti-inflammatory M2 
macrophages play different roles, corresponding to Th2 responses 
[5]. Initially, M1 macrophages infiltrate to phagocytose bacteria,  

 
foreign debris and dead cells. Hypoxia is an inherent feature of  
wound, considered to facilitate cell plasticity, holds back the polar-
ization toward to M1 macrophages by decreasing the expression of 
T cell costimulatory molecules and chemokine homing receptors 
[6,7]. MFG-E8, generated from inflammatory microenvironments, 
induces macrophages reprogramming from M1 to M2 phenotype [8]. 
Epithelial cells, endothelial cells, smooth muscle cells, pericytes and 
wound macrophages have been reported as potential local sourc-
es releasing MFG-E8 [9]. M2 macrophages mainly support cellular 
proliferation, granulation tissue formation, and angiogenesis in the 
following phase of wound healing [10].

Cellular Plasticity in Proliferation Phase

The proliferative stage consists of re-epithelialization of the 
epidermis and repair of the underlying dermal layer. Recent stud-
ies have supposed that the re-epithelialization is modulated by 
two main cell populations: local epidermal cell at the wound edges 
and epithelial stem cell from hair follicles or sweat glands [11,12]. 
With regard to dedifferentiation, the transcription factor Gata6 is 
the identity of a SD lineage and its downstream transcription factor 
network controls a lineage switch between sebocytes and SD cells. 
During wound healing, differentiated Gata6+ cells migrate from the 
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SD into the IFE and undergo reversion, acquiring the property to 
differentiate into a much wider range of epidermal lineages [13]. 
A Similar example of dedifferentiation is that hair follicles form de 
novo following wounding in genetically normal adult mice. The nas-
cent follicles arise from cells in the epidermis and/or infundibulum, 
not the hair follicle stem cell niche,obtaining a phenotype of hair 
follicle stem cell. The renewed hair was lacking of melanocytes and 
the regenerated follicles were lacking of bulge-derived epithelial 
cells, which means related stem cell niche was not re-established 
[14,15]. This wounding-induced renewal could be entirely sup-
pressed by inhibition of Wnt signaling. Correspondingly, the Wnt 
ligands are over-expressed in the hair follicles near the wound edge 
[16]. 

Under homeostatic conditions, the epidermal stem cells in dif-
ferent sites maintain their separate differentiated lineages. How-
ever, after injury, different stem cell populations can interconvert 
functionally. Intriguingly, experimental evidence has supported the 
idea that stem cells in the IFE can be reprogrammed to HF stem 
cells on sustained activation of Wnt signaling [17]. The bulge region 
of the HF has long been supposed as a primary reservoir for epi-
dermal keratinocyte stem cells [18]. Recent lineage tracing exper-
iments revealed that during steady homeostasis, bulge stem cells 
contribute to HF compartments and the SG. In some adverse con-
ditions, however, these cells rapidly migrate toward the IFE to sub-
stitute wounded skin [19]. Additionally, Live cell imaging together 
with lineage tracing experiments showed that progeny of slow cy-
cling bulge cells (expressing CD34 and K15) migrate into the Lgr6+, 
Lrig1+ upper bulge region to convert to the Blimp1+ progenitor 
population and then enter the sebaceous gland as supplement of 
the mature sebocytes [20]. 

At the wound site, blood-borne myeloid cells acquire plasticity 
to transdifferentiate into endothelial cells supporting wound angi-
ogenesis and giving rise to white adipocytes [21,22]. Macrophag-
es are not limited to changing their functional phenotype from 
pro-inflammatory M1 to anti-inflammatory M2 state, but also the 
conversion to endothelial cells, endothelial progenitor cells, or en-
dothelial-like cells [23,24]. Fibroblasts can be of mesenchymal and 
myeloid origin like macrophages. Myeloid-converted fibroblast-like 
cells are the initial contributor of wound site ECM [22]. MSCs ac-
counts for roughly 0.01-0.001% of the bone marrow derived cell 
population [25]. The connective tissue sheath and the papilla of the 
hair follicle probably represent the site for cutaneous MSCs. After 
i.v. injected with MSCs derived from GFP transgenic mice to wound, 
GFP-positive cells with specific markers for keratinocytes, endothe-
lial cells, and pericytes could be detected. Accumulating MSCs at 
wounded sites are able to transdifferentiate into multiple skin cell 
types, contributing to wound healing [26]. 

Cellular Plasticity in Remodeling Phase

Myofibroblasts synthesize ECM components and produce 
high contraction for epithelial-gap closure or wound remodeling. 
Transdifferentiation from quiescent dermal fibroblasts to secretory 
and contractile myofibroblasts plays a key role in remodeling and 
scarring, induced by profibrotic cytokines and chemokines such as 
TGF-β, Ang II, connective tissue growth factor, and ET-1 [27]. TGFβ 

and/or angiotensin stimulate p38-MAPK-dependent activation of 
SRF in fibroblasts, which transcriptionally activates the calcium 
channel TRPC6, allowing calcium entry cells to activate calcineurin, 
eventually leading to the Trans differentiation [28]. Myofibroblast 
trans differentiation also involves TGFβ-induced de novo synthesis 
of αSMA+fibers. αSMA+ fibers enhance contractility and increase 
expression of ECM components, like collagen and fibronectin [29]. 
TGFβ1 binds to the TGFβRII receptor (TβRII), heterodimerizing 
with TβRI/ALK5, a complex which can recruit and phosphoryl-
ate transcription factors Smad2 and Smad3 [30,31]. Then, Phos-
pho-Smad2/3/4 complexes translocate into the nucleus and SBEs 
in gene regulatory elements, participating myofibroblast program-
ming [32-34]. Conversion from myofibroblasts to a completely dis-
tinct adipocyte lineage also has been reported. The reprogramming 
requires BMP signaling which triggered by renewed hair follicles, 
and then activates adipocyte transcription factors which were ex-
pressed during development [35]. 

Conclusion
Looking at emerging evidences of previous studies provides 

better understanding on recovery mechanisms. Promoting regen-
erative medicine by the body’s own cell therapy rather than forced 
genetic tools is likely to become an increasingly significant focus of 
future work.
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