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Introduction
Researchers are working on hydrogels over decades and ac-

cording to researchers a water-swollen, network of cross-linked 
polymers produced by the reaction between one or more mono-
mers or by hydrogen bonding or by large van der Waals interaction 
between chains [1-3]. It has also been reported that the hydrogel 
is a superabsorbent material that absorbs water over 99% of its 
capacity without dissolving itself and swells to form a gel called 
hydrogel [2,3]. The hydrogel is a colloidal material involving dis-
perse phase and dispersion medium combined to yield a semisolid 
material like jelly [4]. Over 70 years ago the process of methacrylic 
acid polymerization was patented [5], and now hydrogels are exist-
ing in a variety of forms. In the biomedical field, the hydrogels have 
entered in the mainstream due to interesting porous structure, bio-
compatibility and easy of production [6,7]. 

The hydrogel can be lone or combinations of different source, 
composition, charge, and structure [1]. Hydrogels are broadly clas-
sified as chemical and physical hydrogels by their crosslinking abil-
ity [1]. Chemical crosslinking involves the conversion of hydropho-
bic polymers into the hydrophilic polymeric gel to form a network 
with the aid of crosslinking agents. However, the crosslinking agent 
can often be toxic and cannot be used in the biological application. 
Hence their removal is required before its implementation in bio 
logical systems [3,7]. Chemically cross-linked hydrogels can be pre 

 
pared either by high irradiation energy or by photo-polymerization 
[1]. Physically cross-linked gels do not possess toxicity like chem-
ically cross-linked gels. Mechanism of physically cross-linked gel 
formation is a molecular entanglement or use of secondary force 
such as ionic interaction, hydrogen bonding, crystallization, hydro-
phobic interaction and protein interaction [3,8].

Advances in Hydrogels
Hydrogels are widely used in the field of drug delivery, tissue 

engineering, regenerative medicine, food industries as well as fash-
ionable showcase materials providing safety cushion and identity 
to the biomedical device [9,10]. In pharmaceuticals, the peptide, 
MIP, nanofiller enhanced hydrogels are being considered as drug 
delivery system [11,12]. Designing of the biomaterial surface can 
turn the material into smart biomaterial, and this surface modula-
tion, e.g., for cell adhesion[13], chemo-selective conjugation of bio-
logicals [14], etc. are gaining more attention of researchers in fields 
like material science as well as bioscience [9]. Swelling nature of 
the gels mainly depends on their network structure, but the latter 
part is significantly related to the condition under which the gel has 
formed [15]. 

Hydrogels have become omnivorous, the pharmaceutical, nu-
traceutical, agricultural, medical devices and cosmetic industries 
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Abstract

Gels or hydrogels are described as the matrix of cross-linked polymers. Hydrogels are naturally a part of the body in the form of collagen, 
gelatin, mucous, tear films, cartilage, vitreous humor, cornea, and tendon. Collagen, gelatin, and nanofillers can be used to modify the strength of 
hydrogels. Use of biodegradable hydrogel scaffold is ideal for tissue regeneration, where the scaffold degrades as the tissue regeneration occurs. 
The hydrogel can be lone or composition of fundamental properties such as edible, non-edible, biodegradable, non-biodegradable, injectable, 
topical, natural, synthetic, physically crosslinked, chemically cross-linked. During past three decades hydrogels due to various factors such as 
biodegradable, absorbent, tissue resemblance and easy use, have received the enormous attention from researchers around the globe. Although 
hydrogels have become part of a variety of industries but quest for biomedical application of hydrogels is ongoing. This review addresses the 
recent advances in different forms of hydrogels and their biomedical use.
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have formulations or developing formulation based on hydrogels 
(Table 1). Modulation of material surface with stimuli-responsive 
polymers can show considerable changes in properties in response 
to various stimuli’s [9,10]. Use of such stimuli-responsive polymers 
in hydrogel preparation can make it stimuli-responsive hydrogel 
and such hydrogel can undergo considerable change in their struc-
ture upon a small change in external environment; such hydrogels 
are called as stimuli-responsive hydrogels [9]. These environmen-
tal changes could be changed in pH, temperature, light and hormo-
nal secretion and have different applications mentioned further in 
Table 1. 

Table 1: Hydrogels and their biomedical applications.

Application Hydrogel Application Ref.

Wound healing Methacrylate, na-
nofiller enhanced Dressing, cream [61-63]

Dental Peptide and colla-
gen-based

Implant, dress-
ing, cream [64-66]

Drug and Vac-
cine Delivery

Stimuli-respon-
sive, nanofiller 

enhanced, 
peptide-based, 
collagen-based, 
molecularly im-
printed polymer 

(MIP) based

Implant, dress-
ing, contact 

lenses, soft-gel 
capsules

[8, 11, 12, 42, 
67-70]

Ophthalmic Methacrylate, 
gelatin

Micro emulsion 
eye drop, con-

tact lenses
[68, 71]

Orthopedic
Collagen, nano-
filler enhanced, 

methacrylate

Implants, mi-
crogel [53, 72, 73]

Cardiac

Nanofiller en-
hanced, gelatin, 
stimuli-respon-
sive, self-oscil-

lating

Bio-actuator, 
implant [9, 74-76]

Organ Culture
Gelatin, collagen, 
peptide, stimuli 

responsive
Scaffold [7, 39, 77-80]

Plastic surgery

Hyaluronic acid 
(HA), stimuli-re-
sponsive, meth-

acrylate

Trans-dermal 
implant [81-83]

Cosmetics
HA, stimuli 

responsive, meth-
acrylate

Cream, dressing [56, 57, 84]

Diapers/ Sani-
tary Pad Methacrylate Pads, Diapers [85, 86]

Medical De-
vices

HA, stimuli re-
sponsive

Robotic dis-
pensers, [7, 87, 88]

Agricultural Methacrylate Powder [48, 89]

Nutraceutical Peptide Micro-particles [27-29]
Tissue regeneration and drug delivery are the focused applica-

tions of peptide-based hydrogels [16]. Supramolecular structure 
of the peptides capable of self-gelation (gelating peptides) can be 
used to deliver and control the release of the drugs physiological 
conditions [17-20]. Peptide-based hydrogel as cochlear implants 
describes the advancement of hydrogels in biomedical applications 

[21,22]. Recent findings point the possibility of the peptide-based 
hydrogels as functionalized biomaterials scaffold to attract projec-
tions from neurons, its attachment and stability providing an un-
interrupted interface between cochlear implants and audio-neu-
rons [21]. Peptide-based hydrogels can mimic extracellular matrix 
(ECM), where the peptides and related derivatives self-assemble 
to form a gel [23,24]. During early 90’s Zhang et al. described that 
peptides can be staggered using their structure, for example, ionic 
bonds formed between alanine side chains facing each other and 
the charged lysine and glutamic acid chains facing each other [25]. 
These hydrophilic/hydrophobic nanosheets then form a fibrous hy-
drogel in the presence of salts [21]. 

Moreover, even the shortest peptide comprised of natural ami-
no acids found capable of creating the transitional α-helices inside 
hydrophilic environment as well as self-assembled into fibrous 
structure [26]. Use of peptide-based hydrogels has begun for nu-
traceutical purposes too [27-29]. Molecularly imprinted polymer 
(MIP) based hydrogels are getting popular in biomedical applica-
tions as smart hydrogels systems [24]. The MIP based hydrogels 
are non-covalently bonded hydrogels formed by hydrogen bonding 
between the monomer and imprint template [24]. The imprints of 
the MIPs formed as a result of template monomer interaction [30]. 
The application of this system involves recognition of target mole-
cules at the molecular level [31]. Precisely, the claims of these MIPs 
prominently associated with microfluidic devices [32,33].

Addition of nanofillers can substantially influence material’s 
mechanical, optical and thermal properties [34]. Based on the di-
mensions the nanofillers can be classified as one dimensional, e.g., 
clay nanoplates [35], two dimensional, e.g., nanofibers (nanotubes 
and nanofibers) [36] and three dimensional, e.g., metallic nanopar-
ticles [34,37]. Clay nanoplates or nanoclays are the basic nanofillers 
to be used in the hydrogels and can be natural, e.g., montmorillonite 
[38], or synthetic, e.g., hydrotalcite [34]. Clays are used as catalysts, 
absorbents, metal chelating agents as well as polymer nanocom-
posites to make the hydrogel mechanically stronger than conven-
tional hydrogels [39]. The water absorption is controlled with the 
inclusion of clay nanofillers in the hydrogels for wound dressing 
[40]. However, other nanostructures like carbon nanotubes (CNT) 
and graphene are one of the novel nanofillers to be used in hydro-
gels [41,42]. Both graphenes, as well as CNT, are being studied for 
their use in tissue engineering as well as in drug delivery [42]; 
moreover, it can be used to coat the electrodes in solar cell oper-
ated medical devices [43]. Similarly, graphene-enhanced hydrogel 
actuators [44], a small amount of graphene could increase the con-
ductivity four times benefiting conductive tapes [45,46], element 
sensor [47].

Super absorbent hydrogels are another example of smart hy-
drogels. Swelling of hydrogel could result in complications in case 
of implants, but the superabsorbent hydrogels withstand the swell-
ing [48,49]. Super absorbent hydrogels can also be referred as su-
per porous hydrogels [49]. Hydrophilic polymers can adsorb water 
up to 90 % of their weight without dissolving. This property of hy-
drogels has been addressed for dressings for wound healing, e.g., 
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alginate-based hydrogel dressing [50]. The research on collagen 
product has broadened in past two decades, and the collagen-based 
hydrogel is part of that development [51]. The skin, bone, carti-
lage, tendon, and vasculature are the different collagen [51]. The 
network of collagen fibers and related components is recognized 
as ECM [52]. Although collagen itself is water-insoluble, it can be 
blended with other hydrophilic polymers to form hydrogels scaf-
folds mimicking skin, bone, etc. [53]. Multilayered collagen hydro-
gel can be prepared for retaining the cellular functions [54]. More-
over, collagen hydrogels have found less toxic compared to many 
others and most efficient in proliferation [7]. The inclusion of pol-
ysaccharides like Beta-glucan (beta-1,6-branched beta-l,3-glucan) 
has been reported biocompatible and effective in encouraging cell 
growth as well as rejuvenate the collagen [55].

Hyaluronic acid (HA) is a polysaccharide-based component of 
the natural ECM [3]. Hydrophilic nature of the HA helps in water 
binding, but on the other side, HA has a short half-life of 1-2 days 
due enzymatic degradation and over-hydration [56]. HA could be 
low molecular weight or high molecular weight [6]. However, the 
low molecular weight HA renders the cell functions and could de-
velop cancer [57]. On the other side, high molecular weight HA is 
nonimmunogenic, aids in nutrient transportation as well pene-
tration of fibers, cells, and vesicles [58]. HA-based implants have 
promising results, e.g., CNS scaffold implantation aids neural reju-
venation [59], elastic nature of HA reduces bone friction [60-80], 
HA gel filler restores skin elasticity and gives uniformity [56]. 

Conclusion
Hydrogels have become one of the essential and vital players 

of biomedical sector. Since chemically cross-linked hydrogels are 
toxic, the physically cross-linked hydrogels are in demand. Hydro-
gels based on peptides, HA, acrylamide are patented and marketed. 
However, the quest for monomers and cross-linkers will remain to 
invent and modify biological applications of hydrogels [81-89].
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