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Introduction
The consumption of pharmacologically active substances 

(PhACs) is steadily increasing, up to thousands of tons per year [1-3]. 
Unfortunately great amount of them cannot be easily removed through 
the conventional technologies used in wastewater treatment plants 
(WWTPs) [3-5]. Their recalcitrant nature cause their occurrence, 
as unmetabolized substances or as active metabolites in ng/l or 
μg/l in rivers, lakes, and even ground and drinking waters [1,4-6]. 
Because of that PhACs are considered to be emerging pollutants 
[1,4,6]. Even if their concentrations in water bodies are three to 
four orders of magnitude lower than those required producing 
pharmacological effects, bioaccumulation and biomagnification 
processes may occur [1]. The quality of aquatic environment 
has also the potential adverse effects on human health [7]. In  
addition, although risk for acute toxic effects for both fauna and  
flora is unlikely, chronic environmental toxic effects cannot be 
excluded [1,4]. 

 
Because of that new technologies which can be used to degraded 
pharmaceuticals are investigated [3]. Fungal treatment of 
wastewaters has been pointed out as a promising technology for 
pharmaceutical remediation processes [3,8,9]. White-rot fungi 
(WRF), which belong to basidiomycetes, have a vast range of the 
unspecific enzymatic systems, and are capable of degrading different 
groups of xenobiotic compounds at very low concentrations [3,4,10-
12]. Besides living cells mechanism, which involves enzymes that 
cause biodegradation, also biosorption both on activated and 
inactivated biomass take part in recalcitrant pollutants elimination 
[8,9]. Two of the most promising fungal strains, which show quite 
good PhACs removal values, are Pleurotus ostreatus and Trametes 
versicolor. They are able to eliminate wide range of pharmaceuticals 
such as β-blockers (atenolol), antiepileptic (carbamazepine), 
analgesic (ibuprofen), anti-inflammatory (ketoprofen and 
naproxen) and estrogens (17α-ethynylestradiol), which suggests 
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the feasibility of this group of microorganisms for pharmaceuticals 
bioremediation purposes [5,11,13]. 

Pharmaceuticals Removal by Pleurotus ostreatus 
and Trametes versicolor

Even though elimination of many pharmaceuticals in 
conventional sewage treatment plants (STPs), due to their 
hydrophilicity, persistent nature, and the relatively low concentration 
is more difficult than that of other organic pollutants, white-rot 
fungi show great potential in removal of these chemical compounds 
[14]. In (Table 1) it has been set together Pleurotus ostreatus and 
Trametes versicolor ability to remove pharmaceuticals, with the role 

of sorption and enzymatic mechanisms. While analyzing different 
studies it is important to keep in mind, that each experiment had 
its own specific methodology. Percentage of degradation could 
depend from medium where the trial was conducted and time of 
experiment. For example, Pleurotus ostreatus completely remove 
the synthetic hormone 17α-ethinylestradiol (in concentration 200 
μg) in 3 days from a liquid complex or in 14 days from mineral 
medium [15]. Sometimes it could cause limitation of fungal ability 
to remove specific pharmaceutic. In Palli et al. [5] research atenolol 
degradation was negligible (<20%) during the first 20 days but it 
increased up to 60% after notable biomass growth (130% when 
compared to the initial inoculum) of P. ostreatus. 

Table 1: Pleurotus ostreatus, Trametes versicolor and their enzymes ability to remove pharmaceuticals.

pharmaceutical

Fungal Strain Enzyme

Pleurotus ostreatus Trametes Versicolor
laccase Cytochrome 

P450 MnPs
Biodegradation Sorption Biodegradation Sorption

10,11-epoxycarbamazepine - - 100[23] - - - -

17α-ethynylestradiol 100[7,15] 19[7] - - 97.100[8,16] - >99[16]

17b-estradiol 17-acetate - - >80[18] >80[18] - - -

Acetaminophen - - 100[23] - - - -

Acridon 0-60[5] - 100[23] - - - -

Atenolol 68-100[4,16] - - - 100[5] 0[5] -

Carbamazepine - - <30-98[3,6,14,29] 6-17[3,9,14] 5-37[14,16] p.r.[26] 14.20[16]

Ciprofloxacin 55[4] - >90[21] - 16[21] p.r.[21] -

Clarithromycin - - - - - - -

Clofebric acid - - <30-97[14,18,29] 12.5[14] 7-20[14,16] p.r.[29] <10[16]

Codiene - - 100[23] - - - -

Citalopram 100[5] 30[5] 100[23] - - - -

Diclofenac - - 54-100[3,6,14] 10-80[3,5,6,14] 90-100[5,14,16] p.r.[5,14] 100[16]

Erythromycin - - 100[23] - - - -

Fenoprofen - - 100[14] 7[14] 20[14] - p.r.[16]

gemfibrozil 50[5] - 83[14] 17[14] 20-30[14,16] p.r.[18] 30[16]

Ketoprofen - - <30-100[14,17,18] 0-15[5,14,17] 0-50[5,14,18] p.r.[5,17] 22[16]

Iopromide - - 39-46[3] 1-8[3] - - -

Ibuprofen - - 100[4,14,29] 17[14] <5-40[14,16,18] p.r.[18] 20[16]

Indomethacin - - 100[14] 15[14] >90[14] - p.r.[16]

Metonidazol - - 100[23] - - - -

Naproxen - - 31-100[13,14,22] 12.5-23.7[14,22] 10-100[16,22] 100[22] 95[16]

Norfloxacin - - >90[21] - 16.3[21] p.r.[21] -

Prophenazine - - 64[14] 10[14] 7[14] - -

Sulfamethazine - - >95[27] 25[27] 22[27] p.r.[27] -

Sulfapyridine - - 100[19] neg.[19] 75-98[19] - -

Sulfathiazole - - 100[19] 17[19] 82-100[19] p.r.[19] -

Venlafaxine - - 49-53[3] 2-6[3] - - -

Note: p. r. – potential role, neg. – negligible role, no data

So atenolol is degraded by the fungus, but it requires a 
long contact time and high levels of biomass production [5]. As 
mentioned above biomass, but also pharmaceutic concentration 
is not without significance. As an example 94% of carbamazepine 

with initial concentration 9mg/L have been removed when treated 
by T. versicolor for 6 days, but only 61% of the contaminant was 
degraded, when initial amount was 50 mg/L [9]. It sometimes 
cause difficulties in comparing result from different researches, 
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like those above with 68% removing of carbmazepine in 7 days 
treated with P. ostreatus, when the input value was 4 μg/L [4]. 
Interestingly even the method of result evaluation has the influence 
on the outcome. It was found 64% of degradation of diclofenac 
treated with T. versicolor when the reduction was measured directly 
(with pharmaceutical concentration in both liquid and biomass), 
and only 54% when was measured indirectly (by subtracting the 
degradation value measured in the liquid from the killed control 
culture from the degradation measured in the liquid from the 
experimental culture from the batch experiments with fungi and 
spiked synthetic medium) [3].

Role of Sorption 
Removal mechanisms during treatment with WRF include: 

sorption on the fungal biomass, degradation by extracellular 
enzymes, and degradation by mycelium bound or intercellular 
enzymes [16]. In case of pharmaceuticals overall elimination by 
fungi the contribution of sorption, fast, reversible and energy-
independent process, cannot be neglected [3,17]. It gathers both 
absorption (entry of pollutants inside the biomass) and adsorption 
(adhesion of pollutants to the biomass surface). It depends on 
fungus, because specific interactions between PhACs and the surface 
components of each fungus can occur. The differences also take 
place, while sorption is on the active or inactive (killed) biomass [3]. 
Structure of biomass, and therefore their sorption capacities, may 
change according to the inactivation mechanism [3,11]. In active 

biomass, transport in living cells may play an important role [3,8]. 
In addition, biodegradation processes of absorbed compounds can 
occur in the active biomass due to intracellular enzymes [3]. On 
the other hand metabolically active biomass, may suppressed toxic 
pollutants by cellular protective mechanisms [8]. 

What is more, way of biomass inactivation can have influence 
on sorption. These presents Palli et al. [5] research, where heat-
killed biomass of T. versicolor remove 47% of diclofenac and 15% 
of ketoprofen, but these percentages were reduced to 10% and 0%, 
respectively, when sodium azide was used to inactivate biomass, by 
blocking active transport across membrane or vesicular pathways 
[5]. Not without significance is chemical character of pollutants. In 
Nguyen et al. [18] it has been reported high (60-99%) removal of 
hydrophobic compounds, to which belongs naproxen or ibuprofen 
by the live culture, but relatively low by the inactivated one, which 
indicates biodegradation was the main mechanism. Hydrophilic 
one on the other hand showed negligible removal by both active 
and inactivated culture, which may indicate the importance of 
sorption in subsequent degradation by the whole-cell [18]. The 
biosorption mechanisms are classified to different types on the 
basis of cell metabolism status or pollutants sorption location [8], 
and have been presented at (Figure 1). The drawback of sorption 
is that fungal biomass after treatment might be considered as a 
potential waste, which requires appropriate treatment before being 
released into the environment [3].

Figure 1: The biosorption mechanisms classified to different types on the basis of cell metabolism status or pollutants sorption 
location after Lu.

Enzymes Contribution in Pharmaceuticals Degradation
Biodegradation by whole-cell can be due to intracellular 

(cytochrome P450), extracellular (laccase, manganese-dependent 
peroxidases - MnPs), mycelium-associated enzymes and their 
synergetic effects [1,5,16,18,19]. This can lead to significant 
differences in removal by whole cell WRF and harvested enzyme. 
For example carbamazepine removal by P. ostreatus is 100%, by 

T. versicolor 98%, whereas crude and purified laccase could only 
achieve 5-37% removal. Similarly, ibuprofen was completely 
removed by whole-cell WRF, while its removal by crude and 
purified laccase was in the range of 5-40%. It substantiates the role 
of mycelium bound and/or intercellular enzymes [16]. Indeed, the 
role of cytochrome P450 in the degradation of naproxen, diclofenac, 
and carbamazepine has been demonstrated is studies where those 
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pharmaceuticals were only partially removed (15-50%) in the 
presence of cytochrome P450 inhibitor [9,11,16,20]. 

What is more there are significant differences depending 
on the origin of the enzymes. Almost complete removal of three 
pharmaceuticals: diclofenac, ibuprofen, and naproxen, have been 
achieved after treatment with crude enzyme extracted from T. 
versicolor, whereas purified laccase from this fungi strain achieved 
only 20–50% removal [16]. To similar conclusions on the efficacy 
dependence from the origin of the enzyme have come Tran et al. [14] 
with researches with T. versicolor, cell-free extract (crude laccase), 
and commercial laccase, examined on diclofenac and naproxen 
[14]. On the other hand purified laccases are more effective for 
the removal of phenolic compounds and usually ranges from 70 to 
99%. Even though that for most non-phenolic compounds removal 
by crude enzyme is <20%, it’s worth to mention that relatively 
higher removal of diclofenac (40-50%), and ibuprofen (30-45%), 
has been reported because these compounds contain both electron 
donating and electron withdrawing functional groups [16]. 

Not without significance is also enzyme activity, like in Nguyen 
et al. [18] work, where when laccase activity increase from 2 to 6 
U/mL, reported removal of naproxen changed from 30 to 100%, 
ibuprofen from10 to 40% and from 25 to 50% in case of ketoprofen 
[18]. What is more, sometimes there is a need for mediator, like in 
Prieto et al. [21] researches, when in in vitro assays with purified 
laccase after adding enzyme mediator ABTS - 2,2-azino-bis-(3-
ethylbenzthiazoline-6-sulfonic acid) diammonium salt, norfloxacin 
and ciprofloxacin removal increased from 0% to 33.7% and from 
16.3% to 97.7% respectively [21]. Also carbamazepine degradation 
by purified laccase increased from 0% to 60% after addition of a 
redox mediator HOBT (hydroxybenzotriazole) in Jelic et al. [9] 
work or naproxen from 10% to 95%, what was presented in Marco-
Urrea et al. [11,13,17,20,22,23] article [9,22,23].

Current and Future Possibilities of Pleurotus ostreatus 
and Trametes versicolor Use

Pleurotus ostreatus and Trametes versicolor use for removing 
pharmaceuticals is one of the most promising bioremediation 
systems, because these WRF are well known as producers of non-
specific enzymes, which allow to simultaneous attack complex 
mixtures of pollutants [1,9,22]. In addition preconditioning of 
fungal strains to particular pollutants is not require, because part of 
the enzymes useful in the degradation are produced constitutively 
while others after induction by nutrient limitation [1,22]. Because 
of that they could find application in wastewater and sludge 
treatment.

Waste Water Treatment Application
There have been conducted several studies about P. 

ostreatus and T. versicolor wastewater treatment application [5]. 
Unfortunately, researches presented by Cruz-Morató et al. [23] 
showed that in fluidized bed bioreactor inoculated with T. versicolor 
biomass used for urban wastewater treatment in non-sterile 
conditions pharmaceuticals removal can change. When comparing 
with the removal in sterile conditions some drugs elimination such 

as acetaminophen, ibuprofen, citalopram was the same (100%), 
some like ketoprofen increased (from 35% in sterile to 100% in 
non-sterile), and some, like in case of 10,11-epoxycarbamazepine 
decreased (from 100% in sterilized urban wastewater to 79% in 
non-sterilized) [23]. Also Yang et al. [24] proved that diclofenac 
removal by T. versicolor in membrane bioreactor (MBR) efficiency 
decrease from 100% in sterile conditions to 55% in non-sterile [24]. 
Even though white-rot fungi capacity to successful degradation 
of pharmaceuticals is irrefutable the problems while application 
in real urban wastewater occur. They are: continuous fungal and 
their extracellular enzymes washout in continuous flow reactors, 
contaminants mixtures, PhACs low concentrations and mentioned 
before non-sterile environment [23,24]. Bacterial contamination 
affects adversely on removal efficiency, because of: competition 
between bacteria and fungi for substrate; fungal mycelium 
damaging, biomass growth disrupting and destabilization of 
fungal activity [16, 24]. Some of the strategies to avoid bacterial 
contamination are:

a.	 Coagulation-flocculation pretreatment of wastewater, 
which will reduce the initial bacterial count; 

b.	 Coupling bioreactor with micro-screen, which would 
retain fungal biomass but allow the washout of bacteria with 
effluent; 

c.	 Immobilization of fungal strains onto different carriers;

d.	 Operation under acidic pH, according to fact that optimum 
pH for the growth fungi is lower than that preferable for most of 
bacteria;

e.	 Periodic fungi biomass replacement;

f.	 Use of disinfecting agents (like ozone), which will 
selectively inactivate bacteria but will not impose any harmful 
effects on fungal biomass.

In case of enzymatic reactors where enzymes instead of whole-
cell WRFs are used, limitation are washout of the enzyme and 
mediators. To avoid it could be use:

a.	 Coupling of enzymatic reactor with a membrane with 
suitable pore size; 

b.	 Enzymes immobilization [16].

These possibilities enable the implementation of technology 
using the WRF, and minimizing inconvenience. It is worth to 
mention, that had been proved that, besides pharmaceuticals 
removal, P. ostreatus is able to reduce chemical oxygen demand 
of the hospital wastewater which is an important advantage [5]. 

Sludge Treatment
WRF might be applied not only at wastewater treatment plant 

itself, but also in elimination pharmaceuticals form sludge. Bio solids 
may still contain significant amounts of drugs and currently the 
development of alternative strategies for its treatment is a matter of 
concern [10,11]. Fungi are robust organisms and are more tolerant 
to high concentrations of contaminants than bacteria [10]. The 
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Rodríguez-Rodríguez et al. [13,19,26] researches results suggest 
that a fungal treatment with T. versicolor could be a promising 
process [11,13]. His another researches (2011) of pharmaceuticals 
biodegradation by this fungi in sterilized sewage sludge under solid-
phase conditions demonstrate complete removal of phenazone, 
bezafibrate, fenofibrate, cimetidine, clarithromycin, sulfamethazine 
and atenolol after treatment, while seven others pharmaceuticals 
were removed between 42% and 80% [25]. In his another work 
(2012) presented T. versicolor in a sludge-bioslurry reactor, 
when fifteen out of 24 detected pharmaceuticals were removed 
at efficiencies over 50% after the treatment (such as diclofenac, 
ibuprofen, indomethacine, sulfamethazine, sulfathiazole), including 
eight completely degraded (e. g. sulfapyridine) [26]. 

What is more García-Galán et al. [27] demonstrated degradation 
capacity of T. versicolor in sterilized sewage sludge, where 100% 
removal was accomplished for sulfapyridine and sulfathiazole 
[27]. Also Palli et al. [5] evidenced carbamazepine degradation 
by P. ostreatus in solid state fermentation [5]. In addition both 
Aydin [10] and Rodríguez-Rodríguez et al. [25,27] researches 

showed significant reduction in toxicity of sludge, which contain 
pharmaceuticals after treatment with T. versicolor [10,25]. It all 
demonstrating the potential application of the fungus for sewage 
sludge bioremediation [27,28].

Future Possibilities
On the base of presented knowledge have been tested tolerance 

of Pleurotus ostreatus and Trametes versicolor to anticancer drug - 
bleomycin. Pure cultures of selected microorganisms were isolated 
with tissue method from fruit bodies and propagated. Their ability 
to grow in the presence of selected substance, were conducted by 
placing 8 mm fungi disc on solid media (Malt Extract Agar) with 
addition of two different concentrations of chosen cytostatic 
(1mg/L and 4mg/L) and incubating for five days in 26°C. Test have 
been conducted in five repetitions. Their tolerance was designated 
by growth ability presented in cm (diameter of colony), which show 
(Figure 2). Even though, growth inhibition is noticeable, both fungal 
strains are able to growth in quiet high bleomycin concentrations, 
which may induce that those strains will find use also in removing 
this cytostatic drug, but further researches are require. 

Figure 2: Pleurotus ostreatus and Trametes versicolor growth in the presence of bleomycin in concentration 1 and 4 mg/L.

Conclusion
Using white-rot fungi: Pleurotus ostreatus and Trametes 

versicolor in pharmaceuticals removal is a promising and 
environmentally friendly technology. Broad applications of 
both active and inactivated form are possible due to different 
mechanisms of their action, such as biodegradation by extracellular 
and intercellular enzymes or biosorption. In addition there is also 
a possibility of using only their extracellular enzymes. Thus, the 
versatility for applying fungi, represent that this microorganisms 
are a promising tool to deal with problem of pharmaceutical 
compounds elimination from the environment.
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