info@biomedres.us   +1 (502) 904-2126   One Westbrook Corporate Center, Suite 300, Westchester, IL 60154, USA   Site Map
ISSN: 2574 -1241

Impact Factor : 0.548

  Submit Manuscript

Research ArticleOpen Access

Production of Lipids from Tunisian Wild Microalgae: Influence of Cell Disruption, Extraction Methods and UV-B Radiation Exposure

Volume 9 - Issue 3

Ines Dahmen Ben Moussa*, Mohamed Bouaziz and Abdelhafidh Dhouib

  • Author Information Open or Close
    • Laboratory of Environmental Bioprocesses, University of Sfax. Sidi Mansour, Tunisia

    *Corresponding author: Ines Dahmen Ben Moussa, Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax. Sidi Mansour Road Km 6, PO Box «1177», 3018 Sfax, Tunisia, North Africa

Received: September 16, 2018;   Published: October 01, 2018

DOI: 10.26717/BJSTR.2018.09.001814

Full Text PDF

To view the Full Article   Peer-reviewed Article PDF

Abstract

Identification of cost-effective methods of cell lysis and lipid extraction from microalgae represent a critical step in the determination of promising biodiesel-producing species. Several cell disruption methods were tested in the microalgae Amphora subtropica, Tetraselmis marina, Picochlorum sp. and Dunaliella sp. Among the methods tested, enhanced lipid extraction was achieved through microwave for Amphora biomass and osmotic shock for Tetraselmis, Picochlorum, and Dunaliella biomass. The Cequier-Sanchez method rendered the highest TL content in Amphora subtropica and Picochlorum sp. while Bligh and dyer method gave the highest TL content in Tetraselmis marina and Dunaliella sp. The treatment of microalgae with 5 days of UV-B stress led to a carotenoid and lipid content increase of 44, 159, 116 and 150%, respectively, and of 56, 84, 111 and 80%, respectively, but with a reduction of the total chlorophyll content (30, 43, 24 and 34%, respectively). Furthermore, a significant increase in malondialdehyde level and superoxide dismutase, catalase and glutathione peroxidase activities toward the control was recorded in response to UV stress. Overall results indicate that treatment of Amphora, Tetraselmis, Picochlorum and Dunaliella with UV-B radiation can further increase the total lipid production, due to its high percentage of SFA and MUFA can be potentially utilized for biodiesel production.

Abbreviations: AOS: Active Oxygen Species; BD: Bligh and Dyer Method; Car: Carotenoids; CAT: Catalase; Chl: Chlorophyll; DT: Direct Trans-Esterification; FA: Fatty Acid; FAME: Fatty Acid Methyl Ester; GPx: Glutathione Peroxidase; MDA: Malondialdehyde; MUFA: Monounsaturated Fatty Acids; NBT: Nitro Blue Tetrazolium; PUFA: Polyunsaturated Fatty Acids; SFA: Saturated Fatty Acids; SOD: Superoxide-Dismutase; TL: Total Lipid; UV: Ultraviolet Radiation

Abstract | Introduction | Material and Methods | Results and Discussion| Conclusion| Acknowledgment| References|